
APPSPACK 4.0: Asynchronous Parallel Pattern
Search for Derivative-Free Optimization

GENETHA A. GRAY and TAMARA G. KOLDA

Sandia National Laboratories

APPSPACK is software for solving unconstrained and bound constrained optimization problems.

It implements an asynchronous parallel pattern search method that has been specifically designed

for problems characterized by expensive function evaluations. Using APPSPACK to solve opti-
mization problems has several advantages: No derivative information is needed; the procedure for

evaluating the objective function can be executed via a separate program or script; the code can

be run in serial or parallel, regardless of whether or not the function evaluation itself is parallel;
and the software is freely available. We describe the underlying algorithm, data structures, and

features of APPSPACK version 4.0 as well as how to use and customize the software.

Categories and Subject Descriptors: J.2.6 [Computer Applications]: Physical Sciences and
Engineering—Mathematics and Statistics

General Terms: Algorithms, Design, Documentation

Additional Key Words and Phrases: parallel derivative-free optimization, pattern search

1. INTRODUCTION

APPSPACK is software for solving unconstrained and bound-constrained optimiza-
tion problems, i.e., problems of the form

min f(x)
subject to l ≤ x ≤ u.

(1)

Here, f : Rn → R∪{+∞} and x ∈ Rn. The upper and lower bounds are optional on
an element-by-element basis; specifically, l is an n-vector with entries in R∪{−∞}
and u is an n-vector with entries in R∪{+∞}. To find a solution of (1), APPSPACK
implements asynchronous parallel pattern search (APPS) [Hough et al. 2001; Kolda
2004], a method in the class of direct search methods [Wright 1996; Lewis et al.
2000]. More specifically, APPSPACK version 4.0 is a software implementation of the
APPS algorithm presented in Kolda [2004] while previous versions of APPSPACK
are based on the algorithm presented in Hough et al. [2001]. It should also be noted

Authors’ address: Sandia National Laboratories, Livermore, CA 94551.

Authors’ emails: {gagray,tgkolda}@sandia.gov.

This research was sponsored by the Mathematical, Information, and Computational Sciences
Division at the United States Department of Energy and by Sandia National Laboratory, a multi-
program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United

States Department of Energy under contract DE–AC04–94AL85000.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · G. A. Gray and T. G. Kolda

that APPSPACK 4.0 is the first version with a related publication.
The APPS algorithm is a variant on generating set search as described in Kolda

et al. [2003]. It is provably convergent if the underlying objective function is suitably
smooth [Kolda and Torczon 2003; 2004; Kolda 2004]. Moreover, APPS is a direct
search method, and thus gradient information is not required. Therefore, it is
applicable to a variety of contexts.

APPSPACK is targeted to simulation-based optimization. These problems are
characterized by a relatively small number of variables (i.e., n < 100), and an
objective function whose evaluation requires the results of a complex simulation.
One standard application of this kind of optimization is parameter estimation. The
goal in this case is to identify the set of simulator input parameters that produces
output that most closely matches some given observed data. For this problem, the
objective function might be of the form

f(x) =
N∑

i=1

(si(x)− oi)
2
.

Here, N denotes the number of data points to be compared; for example, the points
could correspond to times or spatial locations. The values oi for i = 1, . . . , N are
the given observed data values at these points, and the values si(x) for i = 1, . . . , N
are the simulator outputs at the same points, depending on the input x. Note that
in order to discover the x that yields the best fit to the observed data, multiple
simulations are required.

Using APPSPACK to solve optimization problems has the following advantages:

— No derivative information in needed.
— The procedure for evaluating the objective function does not need to be en-

capsulated in a subroutine and can, in fact, be an entirely separate program.
— The code can be run in serial or in parallel, regardless of whether or not the

objective function itself runs in parallel.
— The software is freely available under the terms of the L-GPL.

These advantages have prompted users to employ APPSPACK for a wide variety
of applications. See, for example, Hough et al. [2001], Mathew et al. [2002], Chiesa
et al. [2004], Kupinksi et al. [2003], Croue [2003], Gray et al. [2004], and Fowler
et al. [2004].

APPSPACK 4.0 is written in C++ and uses MPI [Gropp et al. 1996; Gropp
and Lusk 1996] for parallelism. The underlying APPS algorithm and its algorithm-
specific class structures are described in Section 2. Section 3 describes the meth-
ods and class structures used by APPSPACK to manage the function evaluation
process; these tools are not unique to the APPS algorithm and could in fact be
used in other computer software programs. Potential users of APPSPACK will be
most interested in Section 4, where we explain how to use APPSPACK, and in
Section 6, where we summarize and reference some successful applications. In ad-
dition, customizations of APPSPACK are discussed in Section 5. Sections 5.1 and
5.2 describe how the software can be directly linked with the objective function and
how different means of communication can be used for the function evaluation. An
ad hoc means of handling of general linear and nonlinear constraints is discussed
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

APPSPACK 4.0 · 3

in Section 5.3. Implementation of general data structures for handling these types
of constraints is underway and will be communicated in a future publication and
software release.

The notation in this paper is as follows. A boldface capital letter, e.g., T, denotes
a set of vectors. A script capital letter, e.g., I, denotes a set of indices. A boldface
lowercase letter, e.g., x, denotes a vector, and its ith entry is denoted by xi. Note
that di represents the ith vector in a set of vectors and not the ith component in d,
which would instead be denoted di (no boldface). Greek letters, e.g., α, represent
scalars.

2. APPS ALGORITHM & IMPLEMENTATION

The APPS algorithm includes numerous details that are essential for efficient and
correct implementation but not for basic understanding of the method. Omitting
these details, APPS can be simply described as follows.

(1) Generate a set of trial points to be evaluated,

T = {x + ∆idi : i ∈ I}. (2)

Here, x is the best point known so far, di is the ith search direction, ∆i is the
corresponding step length, and I is the subset of search directions for which new
trial points should be generated.

(2) Send the set T to the conveyor for evaluation, and collect a set of evaluated
points, E, from the conveyor. (The conveyor is a mechanism for shuttling trial
points through the process of being evaluated.)

(3) Process the set E and see if there exists a point y such that

y ≺ x.

(The notation “≺”, described in detail in Figure 2, but essentially means f(y) <
f(x).) If E contains such a point, then the iteration is successful; otherwise, it is
unsuccessful.

(4) If the iteration is successful, replace x with the new best point (from E).
Optionally, regenerate the set of search directions and delete any pending trial
points in the conveyor.

(5) If the iteration is unsuccessful, reduce certain step lengths as appropriate. In
addition, check for convergence based on the step lengths.

A detailed procedural version of APPS is given in Figure 1; for a complete math-
ematical description and analysis, see Kolda [2004]. The iteration procedure de-
scribed in Figure 1 can be divided into two parts: steps 1, 3, 4, & 5 and step 2. The
implementation details of the first part are specifically tailored to the APPS algo-
rithm and are described in the remainder of this section. The second part includes
more general features of the function evaluation management used by APPSPACK
and its implementation details are described in the next section.

2.1 Points

Points (i.e., the best point and trial points) are stored as APPSPACK::Point objects.
As previously described, new points are generated according to equation (2), and

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 · G. A. Gray and T. G. Kolda

Initialization.

Choose initial guess x ∈ Rn and tolerances ∆min and ∆tol.

Let D = {d1, . . . ,dp} be a set of search directions that conform to the nearby boundary.
Set ∆i = ∆init and τi = −1 for i = 1, . . . , p.

Iteration.

(1) Generate Trial Points.

Let I := {i : ∆i ≥ ∆tol and τi = −1}. For each i ∈ I:

– Let ∆̃i ≤ ∆i be the length of the longest feasible step from x along direction di.

– Create a new trial point y := x + ∆̃idi and an associated tag.

– Along with y, save the following information.

◦ Parent Tag(y) := Tag(x)

◦ Direction Index(y) := i

◦ Step(y) := ∆i

– Set τi := Tag(y).

– Add the new trial point to the set T.

(2) Exchange Trial Points.

Send the (possibly empty) set of new trial points T to the evaluation conveyor.

Collect a set E of trial points that have been evaluated.

(3) Process Evaluated Trial Points.

Let z be the point in E such that z ≺ y for all other y ∈ E.
If z ≺ x, goto Step 4; otherwise, goto Step 5.

(4) Successful Step.

– Delete x, remove z from E, and reset x := z. Delete remaining points in E.

– Check for convergence based on the function value.

– Compute search directions D = {d1, . . . ,dp} that conform to the nearby
boundary (p may also change).

– Set ∆i := max{Step(z), ∆min} and τi := −1 for i = 1, . . . , p.

– Prune the evaluation queue.

– Go to Step 1.

(5) Unsuccessful Step.

– For each y ∈ E: If Parent Tag(y) = Tag(x), then let i = Direction Index(y)
and set ∆i := 1

2
∆i and τi := −1.

– Delete all points in E.

– Check for convergence based on the step lengths.

– Go to Step 1.

Fig. 1. APPS Algorithm

each new point y is of the form

y = x + ∆idi, (3)

where x is the parent, ∆i is the step length, and di is the direction. Besides the
vector y ∈ Rn itself, each Point object stores some additional relevant information.
Every Point includes a unique tag, a positive integer that is used as an identifier.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

APPSPACK 4.0 · 5

In addition, each Point contains information about the parent (i.e., the vector x),
search direction, and step length used to generate y according to equation (3).
Once a trial point has been evaluated, its function value, f(y) ∈ R ∪ {+∞}, is
also stored in Point. All function values are stored as APPSPACK::Value objects
which handle the possibility that f(y) = +∞. APPSPACK uses the special case
f(y) = +∞ to signify trial points that could not be evaluated (e.g., the simulator
failed) and certain types of infeasible points.

In order for a trial point y to become the new best point (i.e. replace the current
best point), it must satisfy two conditions. First, it must satisfy a decrease condition
with respect to its parent, and second, it must have a function value that improves
upon that of the current best point. We describe both of these conditions below.

A trial point y satisfies a decrease condition with respect to its parent x and step
length ∆ if the following holds:

f(y) < f(x)− α∆2, (4)

where α ≥ 0 is a user-defined constant. If α = 0, this is called simple decrease
[Torczon 1995]; otherwise, if α > 0, this is called sufficient decrease [Yu 1979;
Lucidi and Sciandrone 2002]. To indicate whether or not a trial point satisfies (4)
with respect to its parent, state information is stored in object Point. The state
also specifies whether or not a trial point has been evaluated.

Satisfying decrease condition (4) is only part of the comparison APPSPACK uses
to determine whether or not a point is eligible to replace the current best point.
The comparison also considers the corresponding function values as compared to
that of the current best point and defines a scheme for tie-breaking in the case that
these function values are equal. The complete procedure for determining if a point
y is better than a point x (i.e., whether y ≺ x) is detailed in Figure 2.

Let y and x be Point objects. The following procedure determines if y ≺ x.

– If Tag(y) = Tag(x) (i.e., they are the same point), then y 6≺ x. Else, continue.

– If y does not satisfy (4) with respect to its parent, then y 6≺ x. Else, continue.

– If x does not satisfy (4) with respect to its parent, then y ≺ x. (Note that y has been
evaluated and does satisfy (4) by the previous bullet.) Else, continue.

– If f(y) < f(x), then y ≺ x. Else, continue.

– If f(y) > f(x), then y 6≺ x. Else, continue.

– It must be the case that f(y) = f(x), so we break the tie by choosing the point with

the lower tag. If Tag(y) < Tag(x), then y ≺ x. Else y 6≺ x.

Fig. 2. Determining if y ≺ x.

In summary, an APPSPACK Point object stores the following information:

—the vector y ∈ Rn;
—its unique tag, denoted Tag(y);
—its parent’s tag, denoted Parent Tag(y);
—its parent’s function value;

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 · G. A. Gray and T. G. Kolda

—the step used to produce it, denoted Step(y);
—the index of the direction used to produce it, denoted Direction Index(y).
—the state information;
—its function value f(y) (if it has been evaluated).

The state information indicates whether or not the point has been evaluated and,
if it has, whether or not it satisfies the sufficient decrease condition. Note that
the parent vector is not explicitly stored; instead, only its corresponding tag and
function value are stored. Likewise, the actual direction vector di is not stored;
instead, only its index i is stored.

2.2 Constraints and Scaling

Bound constraints are supported via the APPSPACK::Constraints::Bounds class.
The constraints object is passed as an argument to the APPSPACK::Solver, which
executes the APPS algorithm, so that we leave open the possibility of allowing
user-developed constraint classes in future versions.

The bounds on the variables are specified by the user in the APPSPACK input
file (see Section 4.2). They are used both to determine a conforming set of search
directions (see Section 2.3) and to generate trial points (see Section 2.4).

Related to the bounds and stored in the same object is the variable scaling.
Because derivative-free methods do not use any gradient information, proper scaling
of the variables is critical. Although scaling is not explicitly mentioned in the
description of APPS provided in Figure 1, it plays important roles in convergence
(see Section 2.5), determining a conforming set of search directions (see Section 2.3),
calculating trial points (see Section 2.4), and looking up points in the cache (see
Section 3.4).

In the case that all the bounds are finite, the user may choose either to use the
default scaling vector or to provide one in the APPSPACK input file (“Scaling”
in the “Bounds” sublist). The default scaling vector is defined using the (finite)
bounds. Specifically, let l,u ∈ Rn denote the vectors of the lower and upper bounds,
respectively. Then, the components of the scaling vector s ∈ Rn are defined as

si = ui − li for i = 1, . . . , n. (5)

If finite bounds are not provided or do not exist, s must be provided by the user.
Note that this approach to scaling was motivated by another derivative-free opti-
mization software package, IFFCO [Choi et al. 1999], a Fortran implementation of
the implicit filtering method [Gilmore and Kelley 1995; Kelley 1999].

2.3 Search Directions and Step Lengths

The search directions are handled by the APPSPACK::Directions class. A new set
of search directions, or a search pattern, is computed every time an iteration is
successful (see Step 4 in Figure 1). To generate this search pattern, APPSPACK
considers the scaled coordinate directions and excludes directions outside the tan-
gent cone. Specifically, given the current best point x, the set of search directions
is defined as

D = {d1, . . . ,dp} = {siei : xi < ui} ∪ {−siei : xi > `i},
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

APPSPACK 4.0 · 7

where di is the ith search direction, ei is the ith unit vector, and ui ∈ R ∪ {∞}
and `i ∈ R ∪ {−∞} are the bounds on xi (as defined in (1)).

Each direction di has a tag, τi, and step length, ∆i, associated with it. The tag is
an integer that indicates whether or not there are any points in the evaluation con-
veyor associated with a given search direction. If τi = −1, then there are currently
no unevaluated trial points with parent x that were generated using direction di.
In this case, the step length ∆i is the value that will be used in Step 1 of Figure 1
to compute a new trial point in direction i. Otherwise, τi is the tag number of
the point associated with direction di, and ∆i is the step length that was used to
generate that point.

2.4 Generation of Trial Points

Trial points are generated in the APPSPACK::Solver class. As indicated in Step 1
of Figure 1, a trial point is computed for each direction i ∈ I where I = {i : ∆i ≥
∆tol and τi = −1}. In other words, the set I contains the search directions that
have not yet converged (see Section 2.5) and do not currently have a trial point in
the evaluation conveyor.

For each i ∈ I, a feasible trial point is calculated. If y = x+∆idi is not feasible,
then an appropriate pseudo-step must be determined. The pseudo step, ∆̃i, is the
longest possible step that is feasible, and it is formally defined as

∆̃i = max{∆ ∈ [0,∆i] : l ≤ x + ∆di ≤ u}.

2.5 Stopping Conditions

The primary stopping condition in the APPS algorithm is based on the step length.
This criteria was chosen because it can be shown that if the objective function is
continuously differentiable, then the norm of the gradient (or an analogous measure
of the constrained measure of stationarity in the bound-constrained case) can be
bounded as multiple of the step size, e.g., ‖∇f(x)‖ = O(maxi{∆i}) [Kolda et al.
2003]. In other words, the steps only get smaller if the norm of the gradient is
decreasing. Hence, the step length can be used to define a stopping requirement.

The stopping condition based on step length is used in Step 5 of Figure 1. Specif-
ically, APPS converges if all the step lengths are less than the specified tolerance;
i.e.,

∆i < ∆tol for i = 1, . . . , p. (6)

Here, we say that the ith direction is converged if ∆i < ∆tol. The tolerance ∆tol

can be specified by the user in the APPSPACK input file (“Step Tolerance” in
the “Solver” sublist). The default value is ∆tol = 0.01 which corresponds to a 1%
change in the variables when the default scaling defined in (5) is used.

An alternative stopping condition is based on whether or not the function has
reached a specified threshold. This criteria may be useful when the desired mini-
mum value is known. For example, in the parameter estimation problem described
in Section 1, it may be reasonable to stop when f(x) < 0.03 or when the fit is within
3% of being exact. Step 4 of Figure 1 shows the implementation of the function
tolerance stopping criteria. Specifically, the iterations are terminated if

f(x) ≤ ftol, (7)
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 · G. A. Gray and T. G. Kolda

where ftol is defined by the user in the APPSPACK input file (“Function Tolerance”
in the “Solver” sublist). By default, this stopping condition is not employed.

Stopping can also be defined in terms of the number of function evaluations. In
other words, the algorithm can be discontinued after a specified number of function
evaluations has been completed. This sort of stopping criteria might be useful
when the function evaluations are based on a particularly expensive simulation,
and the user wants to adhere to a specified budget of evaluations. By default, this
stopping criteria is not used, but it can be activated by the user by specifying a
maximum number of function evaluations in the APPSPACK input file (“Maximum
Evaluations” in the “Solver” sublist).

3. APPSPACK FUNCTION EVALUATION MANAGEMENT

This section describes the implementation details and the specific C++ objects
related to the management of the function evaluation process used in APPSPACK
version 4.0. Although we describe the evalution conveyor, executor, evaluators and
cache as they pertain to APPSPACK, it should be noted that they are merely a
general way to handle the process of parallelizing multiple independent function
evaluations and efficiently balancing computational load. Thus, these classes may
be applicable to other software packages.

3.1 The Evaluation Conveyor

From the point of view of the APPS algorithm, the evaluation conveyor simply
works as follows: A set of unevaluated points T is exchanged for a set of evaluated
points E (Step 2 of Figure 1). The set T may be empty. However, because returning
an empty set of evaluated points means that the current iteration cannot proceed,
the set E must always be non-empty.

Within the conveyor, a trial point moves through three stages. The first stage is
to wait in a holding pen (the “Wait” queue) until resources become available for
evaluating its function value. The second stage occurs while the function value is
in the process of being computed, (in which case it sits in the “Pending” queue).
The third stage takes place after the evaluation has been completed, while the trial
point waits to be returned as output from the conveyor (in the “Return” queue).
Each of these stages is described in more detail below.

One key point in this process is that it may take more than one iteration for
a point to move through the conveyor. Thus, the set of points T that is input
is not necessarily the same as the set of points E that is output. Furthermore,
because it may take multiple iterations for a point to move through the conveyor,
it is often desirable to remove some or all of the points that are in the first stage of
the conveyor, waiting for evaluation. This removal of points is called pruning.

Every point that is submitted to the evaluation conveyor is eventually either
returned or pruned. Pruning occurs in Step 4 of Figure 1 while returning takes
place in Step 2. The evaluation conveyor facilitates the movement of points through
the following three queues:

— W, the “Wait” queue where trial points wait to be evaluated. This is the
only queue from which points can be pruned.

— P, the “Pending” queue for points with on-going evaluations. Its size is
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

APPSPACK 4.0 · 9

restricted by the resources available for function evaluations.
— R, the “Return” queue where evaluated points are collected. Its size can be

controlled by the user.

This conveyor process is handled by the APPSPACK::Conveyor object. Each time a
set of trial points is received (Step 2 of Figure 1), the conveyor follows the procedure
diagrammed in Figure 3.

Set R = ∅.
Push new trial points onto W.

?

��
���

H
HHHH

�
����

HH
HHH

|R| ≥ MinReturn?Yes

No

�

�
�

�
�Return R

?

�
����

HH
HHH

��
���

H
HHHH

W and P empty?Yes

No

6

?

��
���

H
HHHH

�
����

HH
HHH

W empty?Yes

No

?

?

�
����

HH
HHH

��
���

H
HHHH

|P| < MaxPending?No

Yes

��
����

HH
HHH

��
���

H
HHHH

Evaluation
finished?

No

Yes

-

6

Pop evaluated point y from P

and push y with f(y) onto R

6

�
����

HH
HHH

��
���

H
HHHH

|R| < MaxReturn

No

Yes

?

6

?
Pop point y from W

?

���
��

HHH
HH

���
��

HHH
HH

Is f(y) cached? Yes

No

- Push y with

f(y) onto R.
-

?
Push y onto P

(starting evaluation)

�

Fig. 3. Conveyor actions for trial point exchange

Points that are waiting to be submitted to the executor for evaluation are stored
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 · G. A. Gray and T. G. Kolda

in W, and they remain there until either there is space in P or they are pruned.
The W queue is pruned whenever an iteration is successful (Step 4 of Figure 1). By
default, pruning is defined as the emptying of W. However, the results of a pruning
can be modified by setting the “Max Queue Size” parameter in the “Solver” sublist
of the APPSPACK input file. Here, the user can specify the number of points that
should remain in W after it is pruned. In this case, the oldest points are deleted
and the newest points remain in the queue.

Before a point moves from W to P, the cache is checked to see if the function
value has already been calculated for that point (see Section 3.4). If so, the cached
function value is obtained, and the point is moved directly to R. If not, the point
moves to P and is evaluated. Once a point has been pushed from W onto P or R,
it can no longer be pruned.

Points which have been submitted to the executor for evaluation are stored in P.
The executor handles the distribution of evaluation tasks to workers and is described
in Section 3.2. The size of P is solely determined by the executor and depends
on available resources. Recall that APPSPACK was designed to accommodate
problems that may have expensive function evaluations. Hence, points may remain
in P for several iterations. Once the executor returns the results of the function
evaluation, the point is moved to R.

Essentially, the conveyor process continues until enough evaluated points are
collected in the R. Enough is defined by the “Minimum Exchange Return” value
set in the “Solver” sublist of the APPSPACK input file. The default value is
one, but larger values can be used to force the conveyor to collect more evaluated
trial points before returning. In the extreme, the conveyor process can continue
until every trial point has been evaluated and collected. This behavior defines
a synchronous pattern search [Lewis and Torczon 1996] and can be activated by
setting the parameter “Synchronous” to true in the “Solver” sublist. (The default
is false.) Finally, note that the size of R can also be controlled by defining a
“Maximum Exchange Return” size in the “Solver” sublist, which defaults to 1000.

3.2 Executors: Function Evaluation Coordinators

When a point enters the second stage of the conveyor, the P queue, it must be
assigned to a worker (if running in parallel) and evaluated. The executor coordi-
nates the assignment of points to workers for function evaluation. Its pure virtual
abstract interface is defined in APPSPACK::Executor::Interface and includes the
following:

— A boolean function that returns true if the executor is waiting to spawn
more function evaluations. The result of this function is used in the conveyor test
|P| < MaxPending shown in Figure 3.

— A spawn function that initiates a function evaluation. The input is a vector
y and its corresponding tag, Tag(y). The tag is used as an input argument in the
function evaluation executable, and it is needed to match the resulting function
value with the appropriate point in queue P.

— A receive function that checks whether or not any function evaluations have
finished. If an evaluation has been completed, the output is the objective function
value and any related information.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

APPSPACK 4.0 · 11

The executor is passed as an argument to the APPSPACK::Solver, the class that
runs the APPS algorithm. APPSPACK 4.0 contains two concrete implementations
of the executor, APPSPACK::Executor::MPI and APPSPACK::Executor::Serial,
and corresponding executables, appspack mpi and appspack serial. In addition,
the executor can be customized by the user as explained in Section 5.1.

The MPI executor that comes with APPSPACK spawns function evaluations to
workers processes. All processors but one are workers; i.e., if appspack mpi is run
with five processes, then there will be four workers and the size of the pending queue
P will be four. Each time APPSPACK calls the spawn function, the executor sends
an MPI message to an idle worker, and the message contains a point to be evaluated
and its corresponding tag. The executor marks the worker as busy. The worker
performs the evaluation by calling the evaluator (see Section 3.3) and returns an
MPI message with the tag, a boolean indicating if there is a function value, the
function value itself, and a message string (e.g., "Success"). When APPSPACK
calls the receive function, the executor checks for a pending messages from a worker
(and there may not be any), collects the result, marks the worker that returned the
message as idle, and returns the result to APPSPACK.

The serial executor does exactly as its name implies—executes function evalua-
tions one at a time. In other words, the size of the pending queue P is exactly one
and all evaluations are performed immediately on the current processor (because
there are no workers). The spawn operation calls the evaluator (described in Sec-
tion 3.3) directly. While there may be some situations where the serial version of
APPSPACK proves useful, this mode is provided primarily for testing purposes.

The executor may be customized, reasons and methods for which are discussed
in Section 5.2.

3.3 Evaluators

The actual objective function evaluation of the trial points is handled by the evalu-
ator, whose abstract interface is defined in the APPSPACK::Evaluator::Interface
class. This structure allows the user to either use the provided default evaluator or
to create a customized one. The default evaluator is the APPSPACK::Evaluator::
SystemCall class, and it works as follows: A function input file containing the
point to be evaluated is created. Then, an external system call is made to the user-
provided executable that calculates the function value. After the function value
has been computed, the evaluator reads the result from the function output file.
Finally, both the function input and output files are deleted. This process is il-
lustrated in Figure 4. Information regarding the user provided executable and the
formats of the function input and output files is given in Section 4.1.

The evaluator is its own entity, not part of the executor, although it is related. In
MPI mode, each worker owns its own evaluator object and receives messages from
the executor on the master processor with the information (e.g., the point to be
evaluated) it needs to pass on to the evaluator. We also note that any information
needed to construct and intialize the evaluator has to be passed from the master
to the worker processes via an MPI message before the APPSPACK::Solver::solve
function is called. In our case, for example, the master sends the workers the name
of the executable to be used for the function evaluation. Note that, in serial mode,
the executor owns the evaluator directly and calls it in the spawn function.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

12 · G. A. Gray and T. G. Kolda

Fig. 4. The “system call” evaluator.

By default, APPSPACK runs the function evaluations as separate executables
and the communication with the evaluation executable is done via file input and
output. In other words, each worker makes an external system call as illustrated in
Figure 5. This default design ensures applicability of APPSPACK to simulation-
based optimization because simulations are often too complex to be easily or rea-
sonably encapsulated into a subroutine. Moreover, allowing the user to supply a
separate executable extends the usability of APPSPACK since, for example, the
user can write the program for the function evaluation in any language or can
simply provide a script that executes individual steps of a complicated function
evaluation. Finally, although system calls and file I/O do add to the overall run
time, the simulation time often makes the external function calls and file I/O neg-
ligible. In applications for which the user may prefer to eliminate this overhead
(for example, the function evaluation may be relatively inexpensive), the user can
provide a customized evaluator as detailed in Section 5.1.

3.4 Cache

Because the APPS algorithm is based on searching a pattern of points that lie
on a regular grid, the same point may be revisited several times. Thus, to avoid
evaluating the objective function at any point more than once, APPSPACK em-
ploys a function value cache. Each time a function evaluation is completed and a
trial point is placed in the return queue R, the conveyor stores this point and its
corresponding function value in the cache. Then, before sending any point to the
pending queue P, the conveyor first checks the cache to see if a value has already
been calculated. If it has, the cached function value is used instead of repeating
the function evaluation.

The cache operations are controlled by the APPSPACK::Cache::Manager class.
Its functions include inserting new points into the cache, performing lookups, and
returning previously calculated function values. Optionally, the cache manager
can also create an output file with the contents of the cache or read an input file
generated by a previous run. These features can be activated using the “Cache
Output File” and the “Cache Input File” parameters of the “Solver” sublist in the
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

APPSPACK 4.0 · 13

Fig. 5. Parallel APPSPACK using the (default) ”system call” evaluator.

APPSPACK input file.
Like its predecessors, APPSPACK version 4.0 uses a splay tree to store points

in the cache [Hough et al. 2000]. A splay tree is a binary search tree that uses a
series of rotations to move any accessed node to the root (see [Sleator and Tajan
1985]). Because the most recently accessed nodes are kept near the root of the
tree, searching these nodes is fast. The APPS algorithm can take advantage of
this characteristic of splay trees because it normally only revisits points that were
evaluated recently.

Cache points are stored as APPSPACK::Cache::Point objects which include only
the vector itself and its corresponding function value. This structure eases storage
and comparison, including special rules for point comparison,as explained below.

APPSPACK does not require exact matched in cache look-ups. Instead, it only
requires that the points be ε-equal. Specifically, trial points x,y ∈ Rn, are ε-equal
if

|xi − yi| <= εsi for i = 1, . . . , n

where si is the ith component of the scaling vector s and ε is some tolerance.
The value of ε can be set by the user using the “Cache Comparison Tolerance”
parameter in the “Solver” sublist of the APPSPACK input file, and defaults to half
the stopping tolerance ∆tol.

It is also necessary to impose some order on the points so that they can be
placed in the tree. Correspondingly, this cache comparison test is also based on
the tolerance ε and the scaling vector s. Here, trial point x is ε-less than y if there
exists an index j such that

|xi − yi| < εsi for i = 1, . . . , j − 1 and yj − xj > εsi.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

14 · G. A. Gray and T. G. Kolda

In other words, for ordering purposes, x comes before y if the first j−1 coordinates
of x and y are ε-equal, and the jth coordinate of y is sufficiently greater than the
jth coordinate of x.

4. USING APPSPACK

APPSPACK 4.0 is available as a free download under the terms of the GNU Lesser
General Public License1. Instructions for downloading, compiling, and installing
APPSPACK 4.0 can be found in the README file included with the software.

4.1 Creating a Function Evaluation for APPSPACK

An executable for evaluating the objective function must be provided by the user.
It can be a single program or a script that, in turn, calls other programs. The
APPSPACK evaluator calls this executable repeatedly to evaluate different trial
points via the C system() command.

The executable command line should accept three input arguments: an input file
name, an output file name, and a tag. In other words, the the calling sequence is

<Executable Name> <Input File> <Output File> <Tag>

The input file is created by APPSPACK to be read by the executable and is simply
formatted. The first line is an integer that indicates the length of the vector, and
each of the subsequent lines contain one component of the vector. For example, the
APPSPACK input file containing the vector [1.24e-1, 17.4e-3] ∈ R2 is:

2
1.24e-1
17.4e-3

The output file is created by the executable and read by APPSPACK. It contains
either the function value as a single numeric entry or an error string. For example,
an output file containing a function value may contain the single line 7.58e-3, and
an output file with an error string may contain the single line Meshing Error.

APPSPACK has the ability to tabulate different error strings and can track an
unlimited number of messages. Strings are defined by the user in the executable.
They can be more than one word but must be only one line, and the string “Success”
is disallowed as an error string. This feature may be useful for identifying the
reasons for function evaluation failure.

The MPI version of APPSPACK executes multiple function evaluations in par-
allel. To prevent these parallel processes from overwriting each other’s files, each
call to the executable includes uniquely named input and output files. This is ac-
complished using the tag number, stored in the APPSPACK Point structure, to
name its related files. The tag is also provided as the third input argument of the
executable to allow the user to uniquely name any additional files that may be
created during the evaluation of the objective function. Note that while the tags
and subsequent file names are unique for a single run of APPSPACK, they are not
unique across repeated runs.

1http://www.gnu.org/copyleft/lesser.html

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

APPSPACK 4.0 · 15

After a function evaluation has been completed, APPSPACK will automatically
delete the input and output files. These files should not be deleted by the exe-
cutable. However, any additional files that were created in the process of evaluating
the function should be deleted by the executable. “Leftover” files, i.e., temporary
files that are not deleted, are a frequent source of errors and may cause system disk
space problems.

4.2 Creating the APPSPACK Input File

The user must provide an input file that specifies the parameters for running
APPSPACK. There are three categories of input parameters: Evaluator, Bounds,
and Solver. Each is described in the subsections that follow. To clarify our discus-
sion of the general formatting of an APPSPACK input file, consider the example
file shown in Figure 6.

APPSPACK INPUT FILE

@ "Evaluator"

"Executable Name" string "example1"

@@

@ "Bounds"

"Lower" vector 3 0 -0.6 0

"Upper" vector 3 5.7 0 1.3

"Is Lower" vector 3 0 1 1

"Is Upper" vector 3 1 0 1

"Scaling" vector 3 1.0 1.0 1.0

@@

@ "Solver"

"Initial X" vector 3 2e-1 0.3 0.5

"Synchronous" bool false

@@

Fig. 6. A Sample APPSPACK Input File

Any empty lines are ignored, and comment lines begin with a #. The beginning
of a category is specified by a @ followed by a space and then the category name in
quotes. The end of a category is designated by a line containing the symbols @@.
Within a category, parameters are defined by name (in quotes), type (string, int,
double, vector, or bool,), and value. String values, such as the executable name,
are given in quotes. Double and integer values are just numbers. Vectors values
include an integer that represents their length followed by each entry. Boolean
values are written without quotes. The only recognized boolean values are true
and false, and any other input is treated as false.

The user has the option of defining any number of the input parameters. These
parameters ensure the flexibility and applicability of APPSPACK to a wide variety
of applications. Some of these parameters permit the user to customize the input or
output of the algorithm and do not have any overall effect on the algorithm itself.
Others allow the user to change some of the underlying mechanics of the method
that may effect the algorithm’s speed, but should not effect its convergence. Despite

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

16 · G. A. Gray and T. G. Kolda

the number of choices offered, we haven’t encountered any difficulties finding appro-
priate parameter values for any applications. In fact, the default values tend to work
well in most cases. The two most critical parameters are the "Step Tolerance"
and the "Scaling" because both play an important role in the algorithm itself.
Below, we give the parameters, their default values, and some indication of their
overall importance.

4.2.1 The "Evaluator" parameters. The evalutor, described in Section 3.3,
handles the actual evaluation of the trial points. Its three parameters merely indi-
cate the names of files as described in Section 4.1. They are:

— "Executable Name" (string): Name of executable that evaluates the objective
function; should be user specified. Default: "a.out".

— "Input Prefix" (string): Input file prefix. Input files names are created
by attaching a unique integer tag suffix; does not need to be specified. Default:
"input".

— "Output Prefix" (string): Output file prefix. See "Input Prefix." Default:
"output".

4.2.2 The "Bounds" parameters. As described in Section 2.2, it is critical that
the variables be reasonably scaled because no gradient information is available to
the APPS algorithm. In APPSPACK, a default scaling vector, s can only be defined
if finite upper and lower bounds are provided for each of the variables, in which
case,

si = ui − li, for i = 1, . . . , n.

where u and l denote the (finite) upper and lower bounds, respectively. If complete
upper and lower bounds are not available, then the "Scaling" must be provided
by the user in the input file. The bounds parameters are:

— "Lower" (vector): Vector of lower bounds.
— "Upper" (vector): Vector of upper bounds
— "Scaling" (vector): Scaling vector.
— "Is Lower" (vector): Binary (i.e., 0/1) vector. A zero in the i-th position

indicates that there is no lower bound on the ith variable.
— "Is Upper" (vector): See "Is Lower".

4.2.3 The "Solver" parameters. The parameters called for in the initialization
of the APPS algorithm outlined in Figure 1 can be defined using the parameters
in this section. Note that potential users may wish to experiment with the "Step
Tolerance" as it can be application specific. For example, many simulators are
insensitve to small changes in parameter inputs. Thus, the step tolerance can be
increased to reduce the overall number of function evaluations required to reach a
solution.

— "Initial X" (vector): Starting point. Default: a vector halfway between the
upper and lower bounds.

— "Initial F" (double): Function value corresponding to the initial guess (if
given). Note: It is not necessary to give an initial function value when specifying
an "Initial X".
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

APPSPACK 4.0 · 17

— "Step Tolerance" (double): Stopping tolerance, ∆tol. Default: 0.01.

— "Minimum Step" (double): Mininmum step size ∆min. Default: twice the
"Step Tolerance".

— "Initial Step" (double): Initial step length, ∆init. Default: 1.0.

— "Contraction Factor" (double): Reduction factor in the step length after
an unsuccessful function evaluation (used in Step 5 of Figure 1). Default: 0.5

— "Sufficient Decrease Factor" (double): Value of α in the sufficient de-
crease calculation, (4). Default: 0.01.

As discussed in Section 2.5, the primary stopping condition of APPSPACK is
based on step length. However, two alternative stopping conditions are offered and
can be activated with the following parameters:

— "Function Tolerance" (double): Function tolerance, ftol, in (7). Default:
Do not use this stopping criteria.

— "Maximum Evaluations" (int): Stop when the number of function evaluations
exceeds this tolerance. Default: Do not use this stopping criteria.

The evaluation conveyor, described in Section 3.1, can be customized using the
following parameters:

— "Synchronous" (bool): If set to true, APPS becomes synchronous parallel
pattern search (PPS). Default: false.

— "Max Queue Size" (int): The number of points remaining in the pending
queue W after a successful iteration and pruning. Default: 0.

— "Minimum Exchange Return" (int): Minimum number of values returned by
the conveyor. Default: 1.

— "Maximum Exchange Return" (int): Maximum number of values returned by
the conveyor. Default: max{ "Minimum Exchange Return", 1000 }

There are also some options in how the cache is used. They are defined using the
parameters:

— "Cache Output File" (string): Name of file in which (cached) function val-
ues will be written; can be used as input to future runs with to prevent repeating
evaluations. Default: no such file.

— "Cache Input File" (string): Name of file with cached function values pro-
duced by a previous run of APPSPACK with the same objective function. Default:
no such file.

— "Cache Comparison Tolerance" (double): Value used to declare two points
ε-equal (with respect to the infinity-norm) in cache comparisons. Default: half the
"Step Tolerance".

Lastly, the following two parameters allow the user to control the amount and
format of the APPSPACK output and have no affect on the algorithm.

— "Debug" (int): Specification of how verbose the output should be on a scale
of 1 to 7 with higher values producing more output. Default: 3.

— "Precision" (int): Number of digits of precision in the output. Default: 3.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

18 · G. A. Gray and T. G. Kolda

4.3 Running APPSPACK

Once an executable and an input file have been created, the user is ready to run
APPSPACK. Instructions and sample execution command lines for both the serial
and parallel versions can be found in the software README file.

For basic testing purposes and to confirm that the software compiled correctly,
three examples are provided in the ${APPSPACK}/examples directory. All three
examples use the simple objective function

f(x) =
n∑

i=1

µi x2
i .

In examples 1 and 2, n = 2 and µi = i, and in example 3, n = 3 and µi = 1.
Example 1 includes only finite simple bounds on the variables while examples 2
and 3 include some nonlinear constraints. (discussed in more detail in Section 5.3).
To run any of the examples, go to the examples directory, and consult the README
file. Sample output files (e.g., example1.out includes results to assist the user in
detecting any installation problems, although the asynchronism means that every
run will be at least slightly different.

4.4 APPSPACK Output

To indicate the progress of the APPS algorithm, a wide range of data is available as
output. Using the “Debug” parameter in the “Solver” sublist of the input file, the
user can control what information is reported. The options range from 1 to 7 with
the higher values producing more output. The default value is 3 which includes the
initialization data, every new minimum, and the final solution. All seven debug
levels are described in the online documentation. By default, all output is printed
to standard output.

In the remainder of this section, we will describe the default APPSPACK out-
put using an example. The output was shown in Figure 7 is from example 1 in
the ${APPSPACK}/examples directory described in the previous section. It was
produced running the MPI version of APPSPACK using 3 processors.

The output begins with a display of the list of input parameters that were used
for the run. The term [default] appears after each parameter for which no value
was specified in the input file. The line under the Conveyor subheading indicates
which version (MPI or serial) of APPSPACK was used, and, in the case of MPI,
how many processors were employed as workers.

Subsequent output indicates the algorithm’s progress. Each line indicates a new
status for the algorithm. At the default debugging level, only new minimums (i.e.
improvements on the best known point) are shown. At higher levels, the sets T of
trial points sent to conveyor or sets E of evaluated trial points are included in this
list. Additionally, some information about the search directions can be included.
Each of the output lines indicating the current status includes the function value,
the point, its step length, tag, and state, and a message indicating how many
iterations of each type have been completed. In this example, “Success” is the only
message string used. In other examples, these counts may include error strings
indicating infeasibility or simulation failure. (See Section 5.3 for an example.)

Finally, the output concludes with the results of the run and some summary
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

APPSPACK 4.0 · 19

*** Parameter List ***

Bounds Tolerance = 0.005 [default]

Cache Comparison Tolerance = 0.005 [default]

Cache Input File = "" [default]

Cache Output File = "" [default]

Contraction Factor = 0.5 [default]

Debug = 3 [default]

Initial Step = 1 [default]

Initial X = [2.000e-01 3.000e-01]

Max Queue Size = 0 [default]

Maximum Exchange Return = 1000 [default]

Minimum Exchange Return = 1 [default]

Minimum Step = 0.02 [default]

Precision = 3 [default]

Step Tolerance = 0.01 [default]

Sufficient Decrease Factor = 0.01 [default]

Synchronous = false [default]

*** Constraints ***

Bound Constraints

lower = [-1.000e+00 -1.000e+00]

upper = [1.000e+00 1.000e+00]

scaling = [2.000e+00 2.000e+00]

*** Conveyor ***

Using MPI Executor with 2 workers

New Min: f=<null> x=[2.000e-01 3.000e-01] step=1.000e+00

tag=0 state=Evaluated (Initial Point)

New Min: f= 1.180e+00 x=[1.000e+00 3.000e-01] step=1.000e+00

tag=1 state=Evaluated Success: 1

· · ·

New Min: f= 3.125e-04 x=[0.000e+00 -1.250e-02] step=3.125e-02

tag=44 state=Evaluated Success: 30

Final State: Step Converged

Final Min: f= 3.125e-04 x=[0.000e+00 -1.250e-02]

step=3.125e-02 tag=44 state=Evaluated Success: 30

Final Directions:

0 : d = [2.000e+00 0.000e+00] step = 7.812e-03

1 : d = [-2.000e+00 0.000e+00] step = 7.812e-03

2 : d = [0.000e+00 2.000e+00] step = 7.812e-03

3 : d = [0.000e+00 -2.000e+00] step = 7.812e-03

Number of Cached Function Evaluations: 9

Number of Evaluations: 37

Evaluation Breakdown by Message Type: Success: 37

Evaluation Breakdown by Processor and Message Type:

Worker #1 Success: 21

Worker #2 Success: 16

Fig. 7. Example of APPSPACK Output

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

20 · G. A. Gray and T. G. Kolda

information. The Final State indicates why APPS algorithm terminated. In this
case, it was because the stopping criteria based on step length was satisfied. Next,
the final minimum is reported using the same status format of each new minimums,
and the final search direction vectors and steps lengths are listed. Then, the total
number of function evaluations completed is reported along with the number of
times a saved function value was used instead of evaluating the function again.
Lastly, the number of function evaluations is broken down by message type and
processor.

4.5 User Resources

Several resources are available for APPSPACK users including online documenta-
tion, mailing lists, and a bug reporting system. The access and use of these tools
is described in detail in the online documentation.

5. CUSTOMIZING APPSPACK

Since the serial version of APPSPACK is provided primarily for testing purposes,
we focus our discussion of customizations on the MPI version.

5.1 Customizing the Function Evaluations

As described in Section 3.3, the default version of APPSPACK requires that func-
tion evaluations be run as separate executables, and any communication between
the workers and the executable must be done using file input and output.

Despite the advantages of using system calls and file I/O for simulation-based
optimization, there are some applications for which the user may prefer to eliminate
this overhead. For example, some function evaluations may require relatively large
amounts of auxiliary data and the use of system calls would require that this data be
re-read every evaluation. It may also be the case that that the function evaluation
is cheap in comparison with the file I/O requirements.

For these applications, the user can create a customized evaluator class, deriv-
ing from APPSPACK::Evaluator::Interface, to be used in place of APPSPACK::
Evaluator::SystemCall and directly compute the function value instead of mak-
ing a call to an outside program. This also eliminates the need for function input
and output files. An illustration of this customization is shown in Figure 8. Note
that unlike the default evaluator shown in Figure 5, each worker actually executes
the function evaluation itself.

A documented example of a customized evaluator is provided in the directory
${APPSPACK}/example-custom-evaluator. Additional instructions for creating a
custom evaluator are provided in the APPSPACK documentation — see “Cus-
tomizing APPSPACK” under “Related Pages.”

5.2 Customizing the Parallelization

Customizing the evaluator only changes how individual functions are executed. In
some cases, users may want to customize the way that the manager-worker relation-
ship works. The key is in the APPSPACK::Executor. Two versions are provided with
APPSPACK: APPSPACK::Executor::Serial and APPSPACK::Executor::MPI, for
the serial and MPI versions of APPSPACK, respectively. A user can write a cus-
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

APPSPACK 4.0 · 21

Fig. 8. Parallel APPSPACK using a customized evaluator.

tomized class that derives from APPSPACK::Executor::Interface. Note that cus-
tomizing the executor likely eliminates the need for the evaluator object.

Some motivations for customizing the executor are as follows.

—Multi-level parallelism can be achieved by assigning groups of processors to each
function evaluation.

—The format of the MPI messages that are sent between the manager and the
worker can be modified.

—The evaluation of functions can be handed off to another library such as a general
optimization interface.

A documented example of a customized executor is provided in the directory
${APPSPACK}/example-custom-executor. Additonal instructions for creating a
custom evaluator are provided on the APPSPACK documentation — see “Cus-
tomizing APPSPACK” under “Related Pages.”

5.3 General Linear and Nonlinear Constraints

In APPSPACK 4.0, general linear and nonlinear constraints are not handled directly
but can be incorporated via a heuristic barrier approach. We employ the error
string capabilities of the function output and a straight-forward modification of
the function evaluation. Note that this customization only affects the function
evaluation executable (or customized evaluator) and does not result in any changes
to the APPS algorithm itself.

Let y be a trial point generated by the APPS algorithm. Then, to incorpo-
rate general linear or nonlinear constraints, use the following customized function
evaluation procedure:

(1) Check to see if y satisfies the constraint(s).
(2) If y is feasible, evaluate the function.
(3) If y is infeasible, write the appropriate error string.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

22 · G. A. Gray and T. G. Kolda

Given the results of the function evaluation, either the function value or the error
string, the APPS algorithm will continue as normal. In the case that the trial point
is infeasible and an error message is returned, the function value will be handled as
f(y) = +∞.

Both examples 2 and 3 in ${APPSPACK}/examples contain bound constraints
and general nonlinear constraints. The bound constraints are handled by the
APPSPACK::Constraints::Bounds class as described in Section 2.2, and the non-
linear constraints are incorporated directly into the provided function evaluation
routines. Consider the following line of output produced running example 2:

New Min: f= 1.005e+00 x=[-1.000e+00 5.000e-02] step=6.250e-02
tag=20 state=Evaluated Constraint Violation: 3 Success: 11

Here, APPSPACK is tracking both the number of points that were not evaluated
because they violated at least one of the constraints (Constraint Violation) and
the number of feasible points that were successfully evaluated (Success). Moreover,
the final function evaluation counts include a breakdown of feasible and infeasible
points:

Number of Cached Function Evaluations: 7
Number of Evaluations: 26
Evaluation Breakdown by Message Type:
Constraint Violation: 8 Success: 18

Evaluation Breakdown by Processor and Message Type:
Worker #1 Constraint Violation: 5 Success: 7
Worker #2 Constraint Violation: 3 Success: 11

Using a customized function evaluation script to handle general linear and non-
linear constraints works well for the simple examples provided in APPSPACK. We
also note that a similar customization of APPSPACK 4.0 was successful in solving
the more complicated constrained optimization problems described by Fowler et al.
[2004].

6. CONCLUSIONS

We have described the underlying algorithm, data structures, features, and ad-
vantages of APPSPACK version 4.0, a software package for solving unconstrained
and bound-constrained optimization problems. Because APPSPACK does not re-
quire any derivative information, it is applicable to a wide variety of applications.
Furthermore, since the procedure for evaluating the objective function can be an
entirely separate, APPSPACK is well suited for simulation-based optimization or
problems for which the evaluation of the objective function requires the results of a
complicated simulation. Moreover, the software is freely available and can be easily
downloaded, compiled and installed. The software has been written so that it is
easily extensible and customizable to individual users’ needs.

There are many real world applications that have demonstrated the benefits
and suitability of APPSPACK. Because these problems are nontrivial and require
lengthy descriptions of the application of interest, related simulator, objective func-
tion, and numerical results, we direct interested readers to the following references.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

APPSPACK 4.0 · 23

—In Hough et al. [2001], APPSPACK is successfully applied to a thermal design
problem for determining the settings for seven heaters in a thermal deposition
furnace as well as to a 17 variable parameter estimation problem in electrical
circuit simulation. In both problems, external simulation codes were required for
the computation of the objective function.

—Mathew et al. [2002] use APPSPACK to solve a problem in microfluidics with
an nonsmooth objective function and required sensitivity computations that are
extremely expensive.

—Chiesa et al. [2004] describe a forging process problem in which APPSPACK
was successful where gradient-based optimization methods with finite-differences
failed. In this case, the objective function is based on several stand-alone codes
including a mesh generator and a structural analysis code.

—APPSPACK is used to fit statistical models in image processing in [Kupinksi
et al. 2003].

—Croue [2003] use APPSPACK to determine the parameters of a wild fire simula-
tor.

—The performance of APPSPACK is analyzed and shown to be preferable to sim-
ulated annealing for a transmembrane protein structure prediction problem in
[Gray et al. 2004].

—In Liang and Chen [2003], the NEOS optimization server [Dolan et al. 2002] is
used to compare APPSPACK and a limited-memory quasi-Newton method for
optimal control of a fed-batch fermentation process. The conclusion is that APPS
is a more powerful tool for this stochastic optimization problem.

—Fowler et al. [2004] investigate the applicability of a variety of direct search meth-
ods to a set of groundwater problems. The objective functions in these problems
require the results of the MODFLOW simulator [McDonald and Harbaugh 1988].
The conclusion is that APPSPACK is a highly competitive option.

Acknowledgments

We are grateful to the referees and the editors for their helpful suggestions to
improve this manuscript and to extend and improve on the examples and docu-
mentation included with the software.

REFERENCES

Chiesa, M. L., Jones, R. E., Perano, K. J., and Kolda, T. G. 2004. Parallel optimization of
forging proceeses for optimal material properties. Tech. rep., Sandia National Laboratories.

Choi, T. D., Eslinger, O. J., Gilmore, P., Kelley, C. T., and Gablonsky, J. M. July 1999.

IFFCO: Implicit filtering for constrained optimization, version 2. Tech. Rep. CRSC-TR99-23,
Center for Research in Scientific Computing, North Carolina State University.

Croue, G. 2003. Optimisation par la méthode APPS d’un problème de propagation d’interfaces
(in French). M.S. thesis, Ecole Centrale de Lyon, France.

Dolan, E. D., Fourer, R., Moré, J. J., and Munson, T. J. 2002. The NEOS server for

optimization: version 4 and beyond. Tech. Rep. MCS-TM-250, Argonne National Laboratory.

Fowler, K. R., Reese, J. P., Kees, C. E., J. E. Dennis, D., Kelley, C. T., Miller, C. T.,
Audet, C., Booker, A. J., Couture, G., Darwin, R. W., Farthing, M. W., Finkel, D. E.,
Gablonsky, J. M., Gray, G., and Kolda, T. G. 2004. A comparison of optimization methods

for problems involving flow and transport phenomena in saturated subsurface systems. in
preparation.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

24 · G. A. Gray and T. G. Kolda

Gilmore, P. and Kelley, C. T. 1995. An implicit filtering algorithm for optimization of functions

with many local minima. SIAM Journal on Optimization 5, 269–285.

Gray, G. A., Kolda, T. G., Sale, K. L., and Young, M. M. 2004. Optimizing an empirical scor-
ing function for transmembrane protein structure determination. INFORMS J. Comp. 16, 4,

406–418. Special Issue on Computational Biology.

Gropp, W., Lusk, E., Doss, N., and Skjellum, A. 1996. A high-performance, portable imple-
mentation of the MPI message passing interface standard. Parallel Comp. 22, 789–828.

Gropp, W. D. and Lusk, E. 1996. User’s guide for mpich, a portable implementation of MPI.

Tech. Rep. ANL-96/6, Mathematics and Computer Science Division, Argonne National Labo-

ratory.

Hough, P. D., Kolda, T. G., and Patrick, H. A. 2000. Usage manual for appspack version 2.0.
Tech. Rep. SAND2000-8843, Sandia National Laboratories.

Hough, P. D., Kolda, T. G., and Torczon, V. J. 2001. Asynchronous parallel pattern search

for nonlinear optimization. SIAM Journal on Scientific Computing 23, 1, 134–156.

Kelley, C. T. 1999. Iterative Methods for Optimization. Number 18 in Frontiers in Applied
Mathematics. SIAM, Philadelphia, PA.

Kolda, T. G. 2004. Revisiting asynchronous parallel pattern search. Tech. Rep. SAND2004-8055,

Sandia National Laboratories, Livermore, CA 94551. February.

Kolda, T. G., Lewis, R. M., and Torczon, V. 2003. Optimization by direct search: New
perspectives on some classical and modern methods. SIAM Review 45, 3, 385–482.

Kolda, T. G. and Torczon, V. J. 2003. Understanding asynchronous parallel pattern search.

In High Performance Algorithms and Software for Nonlinear Optimization, G. Di Pillo and

A. Murli, Eds. Applied Optimization, vol. 82. Kluwer Academic Publishers, Boston, 316–335.

Kolda, T. G. and Torczon, V. J. 2004. On the convergence of asynchronous parallel pattern

search. SIAM Journal on Optimization 14, 4, 939–964.

Kupinksi, M. A., Clarkson, E., Hoppin, J. W., Chen, L., and Barrett, H. H. 2003. Experi-

mental determination of object statistics from noisy images. J. Opt. Soc. Am. A 20, 3 (March),
421–429.

Lewis, R. M. and Torczon, V. 1996. Rank ordering and positive bases in pattern search

algorithms. Tech. Rep. 96–71, Institute for Computer Applications in Science and Engineering,
Mail Stop 132C, NASA Langley Research Center, Hampton, Virginia 23681–2199.

Lewis, R. M., Torczon, V., and Trosset, M. W. 2000. Direct search methods: Then and now.

Journal of Computational and Applied Mathematics 124, 1–2 (December), 191–207.

Liang, J. and Chen, Y.-Q. 2003. Optimization of a fed-batch fermentation process control

competition problem using the NEOS server. Proceedings of the I MECH E Part I Journal of
Systems & Control Engineering 20, 3 (March), 421–429.

Lucidi, S. and Sciandrone, M. 2002. On the global convergence of derivative-free methods for

unconstrained optimization. SIAM Journal on Optimization 13, 1, 97–116.

Mathew, G., Petzold, L., and Serban, R. 2002. Computational tech-
niques for quantification and optimization of mixing in microfluidic devices.

http://www.engineering.ucsb.edu/˜cse/Files/MixPaper.pdf.

McDonald, M. G. and Harbaugh, A. W. 1988. A modular three dimensional finit difference
groundwater flow model. U.S. Geological Survey Techniques of Water Resources Investigations.

Sleator, D. and Tajan, R. 1985. Self-adjusting binary search trees. J. ACM 32, 652–686.

Torczon, V. 1995. Pattern search methods for nonlinear optimization. SIAG/OPT Views-and-

News: A Forum for the SIAM Activity Group on Optimization 6, 7–11.

Wright, M. H. 1996. Direct search methods: Once scorned, now respectable. In Numerical
Analysis 1995 (Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis),

D. F. Griffiths and G. A. Watson, Eds. Pitman Research Notes in Mathematics, vol. 344. CRC

Press, 191–208.

Yu, W. 1979. Positive basis and a class of direct search techniques. Scientia Sinica Special Issue
of Mathematics, 1, 53–67.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

